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Equational Languages 

AI~DRZEJ BLIKLE 

Computation Center, Polish Academy of Sciences, Warsaw, Poland 

This paper deals with equations whose solutions are vectors of languages. 
Formally, solutions of equations are fix points of vectorial functions on 
languages. On the other hand equations (and sets of equations) can be con- 
sidered as grammars. Three main groups of problems are dealt with: (1) sol- 
vability of equations in a lattice of languages, (2) relationship between type of 
functions used in equations and properties of languages defined by them, 
(3) applications to the theory of Context-free and regular languages. 

1. INTRODUCTION 

Two principa! language-describing tools known in the theory of formal 
languages are generative (Chomsky's) grammars and accepting automata. 
On the other hand, in describing programming languages one uses mostly 
so-called Backus-Naur equations. These, although called equations, are not 
treated in a proper algebraic sense, but rather as formal expressions "to be 
referred to as equations." In fact, : : - -  stands for -~ and [ stands for k3 (the 
union), but this is never improve d in practice. Moreover, to describe the 
meaning of such equations one associates with them context-free grammars. 
In effect the "equational" character of equations is lost. 

Sets of equations describing languages have previously been investigated 
by other authors. Chomsky and Schutzenberger (1963) discussed such 
equations understood as formal expressions. This idea was later developed 
in Mezei and Wright (1967) and in Shamir (1967). Equations have been 
treated as formal expressions which offers considerable difficulty in 
formulating and proving theorems. In the meantime Ginsburg and Rice 
(1962) and Ginsburg (1966) described Backus-Naur equations by associating 
with them sets of certain many-argumental functions on languages and used 
this tool in proving the equivalence of ALOoL-like and context-free concepts. 
The ideas of Ginsburg and Rice are generalized and developed in this paper. 
An earlier exposition of the present results was given in a technical report 
(Blikle, 1971). 
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2. BASIC NOTIONS 

The  reader is assumed t o  be familiar with basic notions of the theory of 
formal languages like word, language, concatenation, substitution, homo- 
morphism, etc. [cf. Ginsburg (1966)]. 

Let  V be an arbitrary (finite) alphabet to be fixed for the sequel. For any 
positive integer n the n-dimensional lattice of languages is the set 

~e~  = (2~*),,  

of all vectors (A 1 ,..., A~) with Ai C_ V* for i = 1,..., n. Clearly £a~ is a 
lattice (complete) with respect to the ordering C~ defined by the formula 

(A1 ..... Am) _C~ (B, .... , B~) ~ef (Vi ~< n)(A, C_ B d. 

In  the sequel we shall omit the superscripts and write _C instead of _C~. The  
lattice operations L J, (3, U and ~ in ~ n  and the n-dimensional concatenation 
will be also written without superscripts, e,g., 

(Al ' ""  An)° (BI '""  Bn) dee~f (Al° B1 ..... An oBn), 

etc. 
Elements of ~gon will usually be denoted by boldface latin initial capitals 

A, B, C,. . . .  Boldface latin terminals X, Y, Z .... will denote variables ranging 
over ~on. Moreover, ~ ~ = ( ~  ..... ~) ,  where ~ is the empty set. 

In  the paper we shall be concerned with total functions of the type 
F : ~ -+  ~ .  The  cases of particular interest are n ~- m--vectorial functions 
(abr. v functions), and m = 1--scalar functions (abr. s functions). 

A function F : 5¢ = -+  ~oq~ is called monotonic i r a  _C B implies F(A) C F ( B )  
for any A and B in ~ n .  

F is said to be continuous, if F([)~°=I A~) = 0[=IF(A~) for any increasing 
sequence A I C A2 C .-- of vectors in ~?% It  can be interesting to note that 
this notion of continuity coincides with the one of D. Scott [cf. Scott (1970)] 
for the lattice of languages o9. °~. However it seems to be different for arbitrary 
complete lattices. 

As it is easy tosee ,  each continuous function is monotonic. Examples of 
continuous functions are "polynomials" constructed with the operations 
of union, concatenation and • closure, e.g., F(X, Y) = ( A X  u Y*, A X B Y * )  
is a 2-dimensional continuous function and G(X, Y) = ( X -  Y, Y -- X)  
is neither continuous nor monotonic. 

Consider an arbitrary vectorial function F : ~c:,~ __> ~ .  I f  there exists a 
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vector A in L~ °n with F(A) ---- A, then A is said to be afixpoint (abr. FP) ofF. 
I f A  is an FP o f F  and for any other FP B ofF, A C B, then A is said to be 
the leastfix point (abr. LFP) o fF .  We shall denote it by [IF[]. 

The following approximation theorem is well known [cf. Mezei and 
Wright (1967), Shamir (1967), Scott (1970) and others]. 

THEOREM 2.1. For every continuous function F : ~ n - - ~  ~f~ the LFP HF H 
exists and 

.% 
IIF[I = U Fi(~n)  ' 

i = 1  

where Fi(X) = F "" F(X)  i times. 

Let F(X, Y) be an arbitrary n + m-argumental function, where X ranges 
over ~ ,  Y ranges over ~ and F ranges over 5~ ~ again. In other words 
F : 0,% °'+'~ -+ ~q~n. I f  there exists a function G : ~ m  __+ ~q~n such that for 
every vector A in ~qom, G(A) is the LFP ofF(X, A), then G is said to be the 
resolvent o f F  with respect to X and is written [ef. De Bakker (1971)] 

G(Y) = (t~X)F(X, V). 

As it is easy to see, G(Y) is a solution of the equation 

X = F(X, Y), 

therefrom the name. On the other hand if m = 0, then (/~X)F(X) = / IF ] I  
provided [] F [I exists. 

The following theorem is proved in Leszczytowski (1971): 

THEOREM 2.2. For every continuous function F(X, Y), where X and F 
ranges over 5~ n, the resolvent G(Y) = (/~X)F(X, Y) exists and is a continuous 

function. 

With the help of Theorem 2.1 one can easily prove the following formulas 
for arbitrary languages A, B and C: 

( ~ x ) x  = z ,  

(~X)A = A, 

(I~X)(AX t3 B) = A ' B ,  

etc, 

( ~ x ) ( x A  w B) = BA*, 

(~X)(X*A u A) = A+, 

(~X) (AXB u C) = 0 A~CB~, 
i=O 

(1) 
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3. SETS OF EQUATIONS 

Let  A e cpn. By [A]i for i ~< n we shall denote the i-th coordinate of 
A, i.e., if A = (A 1 ,..., An), then [A]i = A i .  

With every function F : ~ --+ ~ we can associate a vector (fz ,..-, f~)  
of  n-argumental scalar functions defined as follows: for every A in ~ n  and 
every i ~ m, f i (A)  = [F(A)]i .  For the sake of convenience we shall frequently 
identify the function F with the corresponding vector of functions (fl , . . . , . f~) 
and write simply F = (fl  ..... f~). Clearly F is continuous if f l  ,...,fr~ are all 
continuous. 

Consider now a set of n-argumental scalar functions f l  ,-.., f~ and the 
following set of equations: 

X z = f l ( X l , . . . ,  Xn)  
• . .  (2) 

X ,  = fn(X1 ,..., Xn). 

Any fix point of the function F = (fl ,..., f~) is said to be a solution of this set. 
I f  I[ F [I exists, then II F II is said to be the least solution of (2). 

To simplify the notation (2) will be frequently written as 

X = F(X). 

Similarly, if A = (At .... , Am) and B = (B1 ,..., B~), then by (A, B) we shall 
mean the vector (A 1 ,..., An ,  Bz .... , B~). 

By a set of  equations with parameters we shall mean any set of equations of 
the form 

X = F(X, Y), 

where X and F range over the same ~ " .  Now if G(Y) = (/~X)F(X, Y) 
exists, then it is called the solution of this set. Clearly, F(G(Y),  Y) = G(Y) 
for any Y. 

Two sets of equations X --  F(X) and Y = H(Y) are said to be equivalent 
if either both 11 F 1I and I[ G li do not exist or both exist and are equal. 

THEOREM 3.1. Consider the set of equations of the form 

X = F(X, Y), 

¥ = H ( x ,  v ) ,  

where F : .~n+m __~ £~n, H : ~,q~+~ --~ ~-q~, X ranges over 5q n and Y ranges 
over L f  m. 
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I f  F and H are continuous functions and G(Y) = (/xX)F(X, Y), then the set 
of equations 

X = a(Y),  

Y -~ H(G(Y), Y), 

is equivalent with the set (3). 

This theorem is proved in LeszczyIowski (1971) and permits resolving 
equations in ~ by eliminating variables. It  is to be emphasized that the 
theorem is not true for arbitrary F and G, i.e., where F and G are not 
continuous. 

4. EQUATIONAL LANGUAGES 

Let ~ be an arbitrary family of Scalar functions. A language A is said to be 
equational with respect to ~ if there exists a v-function F ~ (fl ,...,f~) with 
f l  .... , fn in F, such that Hflj exists and A = [IIFII]~ for some i ~ n. By 
E Q [ ~ ]  we denote the set of all languages equational with respect to ~ .  

THEOREM 4.1. Let ~ be an arbitrary family of continuous functions. 
The family of languages EQ[,~-] is closed under all functions in Y and under 
the resolvents of all functions in ~ .  

Proof. Let g(X  I ,..., Xn) be in #-  and let A 1 ,..., An be in EQ[o~]. By 
virtue of the assumption there exists a v-function F over o~ with Ai = [/I F il]i 
for i ~- 1,..., n. Consider now the set of equations 

• x = F ( X ) ,  

Y = g ( X ,  Y) ,  

and let (d  1 .... , An) - -  A. By Theorem 3.1, (A, (/~Y)g(A, Y)) is the least 
solution of this set. Therefore (l~Y)g(A, Y )~  EQ[o~-], which proves the 
second part of the assertion. The first part follows immediately therefrom 
since every function in o~ is a resolvent of a function in ~-. Indeed, 
f (X)  = (/xY)f(X). Q.E.D. 

Consider now an arbitrary family ~,~ of continuous functions and let 
RCC[~]  (to be read: resolvent-composition closure) denotes the least set of 
functions that contains ~ as a subset and is dosed under the/~ operation 
and the composition of functions. 
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THEOREM 4.2. I f  Y is a family of continuous functions and contains the 
identity function f (~¥) ~ X, then 

EQ[~-] = EQ[RCC[~]].  

Pro@ Let ~ be an arbitrary family of continuous functions with 
f ( X )  -- X. Consider an increasing sequence of sets of functions Y0, o~ ,... 
defined as follows: (1) J0  = o~, (2) ~+~ is the least set with the following 
properties: 

(i) ~ C o%~ ; 

(ii) if F, G are in 4 ,  then the resolvent o f f  with respect to any vector 
of variables, and any composition of F and G are in ~+~ .  

Clearly RCC[~]  = Ui=o ~ .  
Consider now the set of equations 

x = (~z) F(x ,  Y, z), 
(4) 

Y = H(X, Y), 

and the set 

z = F(x ,  Y, z),  

x = z ,  (s) 

Y = H(X, Y). 

By Theorem 3.1 the last set is equivalent with 

Z = (~Z)F(X, Y, Z) 

X = (/xZ)F(X, Y, Z) (6) 

¥ = H(X, V). 

Clearly, if (A, B) is the least solution of (4), then (A, A, B) is the least 
solution of (6), hence also of (5). 

In a similar way we can show that the set of equations 

x = F(x ,  G(X, V), V), 

V = ~ ( x ,  v) ,  

can be "replaced" by the set 

Z = a ( x ,  V), 

X = F(X, G(X, Y), Y), 

Y = H(X, Y). 

643]2112-4 
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In  effect we have proved that every set of equations in o~+1 can be replaced 
(in a sense) by a corresponding set in 4 .  In  other words E Q [ ~ + I  ] C EQ[o~], 
which completes the proof. Q.E.D. 

This theorem together with Theorem 4.1 imply immediately what follows: 

COROLLARY 4.1. Let ~ be an arbitrary family of continuous functions 
containing the identity function f (X) = X.  The equational family of languages 
EQ[~-] is closed under all functions in R C C [ ~ ] .  

I t  should be stressed that RCC[ f f ]  need not contain all functions that do 
not lead out of EQ[f f ] .  For appropriate examples see Blikle (1971). 

By an operation on languages we shall mean any function f : ~ 1  __+ oLpl. 
Particular operations on languages are substitutions, homomorphisms and 
inverse homomorphisms. As it is easy to show [see Blikle (1971)] all these 
operations are continuous. 

Given an operation h : 5¢1 _+ 5 0  we shall denote 

h " ( &  .... , X , )  ~r (h(&),..., h(X,)). 

Given two n-argumental functions F and G, F o G will denote the com- 
position, i.e., [F o G](X) = G(F(X)). 

TtlEORF.M 4.3. Let ~" be an arbitrary family of continuous functions and let 
h be an arbitrary continuous operation with h ( ~ )  = Z .  I f  for every n-argumental 
v-function F in o~ there exists a v-function F 1 in o ~ with 

F o h "  = h " o F 1 ,  

then the family of equational languages E Q [ ~ ]  is closed under h, i.e., 
h(EQ[~] )  _C_C EQ[o~-]. 

Proof. Let h be an arbitrary continuous operation with h ( ~ )  = g and 
for some F in o~ let there exist F 1 in o~ with F o h ~ = h n o F 1 . Consider now 
two sets of equations 

x = e ( x )  and X : E l ( X )  

and let A be the least solution of  the first one, and B of  the second one. 
We shall show the equality 

B = h"(A). 
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Indeed, By Theorem 2.1, 

On the other hand, 

B = 0 Fli(Z~)" 
i=1 

FI( z ~) = F~(h~( z ~)) = hn(F( z ~)). 

Therefore,  by an inductive argument, 

Eli(  Z n) = hn(Fi( Z n)) 

for i = 1, 2, . . . .  Hence, by (7), 

o I91 ) B = h - ( F ~ ( z  ~)) = h F ( z  n) = ha(A).  
i=1 = 

(7) 

Q.E.D. 

5. INDUCTIVE FAMILIES OF FUNCTIONS 

Consider an arbitrary finite set e I ,..., e n of scalar functions and an arbitrary 
family ~0 of languages. By the inductive f ami l y  of  functions over e 1 ..... en and 
~ 0 ,  in symbols 

IND[e  I .... , e~ ,  ~0], 

we mean the least set of many-argumental  scalar functions which contains 

(1 °) all projections f ( X  1 ,..., X~)  = X i  with i ~< n, 

(2 °) all constant functions with values in ~°0, 

(3 °) the functions e 1 ,..., e~, 

and which is closed under  the operation of composition. 
Consider now an infinite sequence o~0, ~ .... of families of functions 

defined as follows: 

(1) o~ o consists of all functions of the type (1 °) and (2°), 

(2) o~+1 consists of all functions of the form 

g ( X  1 ,..., X ~ )  = ej(gl(X1 .... , X~) , . . . ,  gk~(X1 .... , Xm)),  

whereg l  .... , g k ~ e ~ .  



142 BLIKLE 

As it is easy to see, 

IND[el ,..-, en, ~o1 = 0 o~.  (8) 
i=1 

THEOREM 5.1. Let IND[e 1 ,..., en, ~o] be an arbitrary inductive family 
of functions, where e 1 ,..., e~ are continuous and let h be an arbitrary continuous 
operation with h( ~g ) = ~ .  I f  ~o is closed under h and if  for every ei there 
exists anf i  in IND[e 1 ,..., e . ,  ~fo] with 

h(ei(Xl ,..., Xm)) = fi(h(Xl),..., h(Xm)), 

then the equational family of languages EQ[IND[e 1 .... , e~, 5eo] ] is closed under 
the operation h. 

Proof. Let the assumptions of the theorem be satisfied, let 

F ~ IND[e~ ,..., e~, ~0] 

and let f o ,  o~,. . ,  be the sequence of families of functions in the sense of (8), 
where ~0 = ~ .  We can easily prove by induction the following assertion: 

( , )  for every i ~  1 and every g in ~ there exists f in ~" with 
h(g(Xa ,..., X,~)) = f(h(Xa),..., h(X~,)) for any X~ ..... X~ in 50 .  

This, by Theorem 4.3, completes the proof of our theorem. Q.E.D. 

THEOREM 5.2. Let e 1 ,..., e~ be arbitrary continuous functions and let ~o 
be an arbitrary family of languages. 

I f  ~ = EQ[IND[e 1 ,..., e , ,  ~o]], then 5e o C ~ and 

= EQ[IND[e 1 ,..., e,~, ~W~]]. 

Proof. Let IND[e 1 ..... e,] denote the least set of functions that contains 
e 1 ,..., e. and all projections and that is closed under the operation of 
composition. The following assertion can easily be proved by (8) and the 
induction on i. The proof is left to the reader. 

(**) For every f in IND[e 1 ..... e , ,  ~0] there exists g in IND[e 1 ,..., e~] 
and A 1 ,..., A~ in ~o with 

f ( x l  ,..., x ~ )  = g(X~ ,..., x ~  , n l  ,..., n~) .  

Now we can start the proper proof of the theorem. The inclusion ~o __C- 
is obvious since every A in ~0 is the least solution of the equation X ~ A." 



EQUATIONAL LANGUAGES 143 

Let now 
IND0 ---- IND[e l  ,..., en ,  ~o],  

I N D  1 ~- IND[e  1 ..... e~, ~ ] .  

Consider  the set of equations 

x = F(X),  

where F = (fl,".,f,~) with f l  .... , f ~ e l N D  1 and let A = IIFI;. We shall 

show now that  A ~ ( ~ ) m .  
Le t  gx ,...,gin be these functions in IND[e  1 ,..., en] which correspond to 

f l  , . . . , f~  in the sense of (**). Wi thou t  any loss of generality we can assume 
now the existence of a natural  number  k and a vector B in ~ with the 
proper ty  that  gl  ,..., g~ are all m -}- k-argumental  functions and that  

f,(X) = g~(X, B) (9) 

for i = 1 .... , m. This  assumption is clearly equivalent with adding to every 
gi a corresponding number  of "unneccessary" variables. Let  now 
B = (BI ,..., B~). By our assumption B 1 ,..., B~ a~qPl, thus there exist 

v-functions F I , . . .  , F k in I N D  0 with 

[I]F~ II]l = Be (10) 

for i ---- 1,..., k. Consider now the following set of equations: 

z~ = &(z~) ,  

Z~ = G(Z~) ,  

Yl = Z n ,  (11) 
. . o  

x = a ( x ,  Y), 

where G = (g~ , . . . , g~ ) ,  Y ---- (I71 ,... ,  Y~),  Z~ = (ZI~ .... , Z,,~). This  is 
clearly a set of equations in I N D  0 . Consider  now the set of equations: 

Z l  = F~(Zl), 
. . .  

Z~ = G(Z~) ,  

Y~ - -  Zl~,  

Y~ = z ~  
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and let (C1 ,..., Ck,  D) be the least solution of this set. By Theorem 3.1, 
D ~ ([[IF 11111 .... , [liFe [[]1), thus, by (10) D = (B 1 ,..., B~) = B. Therefore, 
once more by Theorem 3.1, the least solution of (11) is of the form 

(C1 ..... C~,  B, E), 

where E is the least solution of the set 

X = G(X, B). 

Clearly the last set is equivalent to 

x = F(X)  

[see (9)], thus (C 1 , . . . ,C~, B, A) is the least solution of (11). Therefore 
A ~(L1) ~ since (11) is clearly a set in I N D  0 . Q.E.D. 

The  above theorem permits strengthening Theorem 5.1 into the following 
form: 

Tn~ORZM 5.3. Let el ,..., e, be arbitrary continuous functions, let 5e o be an 
arbitrary family of languages, let ~ = EQ[IND[e  1 ,..., e,~, ~eo] ] and let h be an 
arbitrary continuous operation. 

I f  h(~o) C ~ and for every ei there exists f ,  in IND[e  1 .... , e , ,  4 ]  with 

h ( e i ( X  1 .... , Xm))  = f i ( h (X l ) , . . . ,  h(Xm)) ,  

then the family ~ is closed under h, i.e., h(~q~) C_ ~ . 

Proof. Suppose the assumptions of the theorem are satisfied and let 
~ 0  = IND[el  ,..-, e , ,  ~0] and ~ '1  = IND[el  .... , e , ,  5¢z]. In  a way analogous 
to that in the proof of Theorem 5.1 we can easily show the following: 

(***) For every f in ~ 0  there exists an f l  in ~ 1  with 

h( f (Xx .... , Xra)) = f l ( h ( X l ) , . . . ,  h(X,n))  

for any X 1 ,..., X ~ .  

Let  now A ~ ( ~ ) ~ .  By this assumption there existsF in ~-o with 1[ F 1] = A. 
Hence, by (***), there exists F 1 in #-1 with 

F o h ~ = h ~ o F 1 . 

Let  B = 11Fx [1- By Theorem 5.2 B e (~LP1) '~ and the equality h~(A) = B 
can be proved analogously as in the proof of Theorem 4.3. Q.E.D. 
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6. CONTEXT-FREE LANGUAGES 

Let t_J, o and &o F denote, respectively, the operation of union, the operation 
of concatenation and the set of all finite languages, the empty languages 
included, over the alphabet V fixed in Section 2. Let &oc~ denote the class of 
all context-free languages over V. 

By the set of all standard polynomials we mean the inductive family 
IND[k3, o, &or]. Clearly, standard polynomials are functions which appear 
in the so-called Backus-Naur equations in the definition of ALGOL and other 
similar languages. Therefore, the well-known theorem [see Ginsburg and 
Rice (1962) and also Ginsburg (1966)] to the effect that ALGoL-like languages 
and CF languages are the same, has now the following wording: 

THEOREM 6.1. EQ[IND[w, o, &OF]] = &OcF. 

According to this theorem CF languages are definable by means of 
polynomial equations with finite "coefficients." By Theorem 5.2 we can 
claim now that CF languages can be defined also by polynomial equations 
with CF coefficients, and by Theorem 4.2 that polynomial equations can be 
replaced by equations in RCC[IND[k), o, &OcF]]. In other words we have 
the following: 

THEOREM 6.2. EQ[IND[U, o, &OCF]] = &OCF" 

THEOREM 6.3. EQ[RCC[IND[U, o, &OcF]]] = &OCF. 

Note that the star closure is in RCC[u, o, &OcF] since Y* = ( f z X ) ( Y X  u {~}). 
Consequently polynomial equations with star operation define always 
CF languages. For example the set of equations 

X = ( X Y ) *  A W Y*, 

Y = X Y * X  u B, 

defines two CF languages, provided A, B e &OcF • 
The above theorems together with theorems in Sections 4 and 5 imply 

immediately some well-known results [see Ginsburg (1966)] concerning 
closure properties of &OcF : 

THEOREM 6.4. &OCF is closed under the union, the concatenation and the 
star closure of languages. 

The proof is by Theorems 6.1 and 4.1. 
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THEOREM 6.5. &°CF is closed under the operation of substitution, Le., under 
every substitution s with the property that s(a) G ~cF  for every a in V. 

Proof. Let s be an arbitrary substitution with s(a) G ~q°cv for every a in V. 
Since ooq°CF is dosed under the union and the concatenation, s(S~°F)__C ~cF-  
Moreover, 

s(A: u & )  = s(&) u 4 & )  

and 

s(AIA2) = s(A1) s(A2) 

for any _d 1 and -//2 in coI. Therefore, by Theorem 5.3 and by the observation 
that s is continuous, ~CF is closed under s. Q.E.D. 

Also the class ~¢~ of all regular (finite-state) languages is an equational 
class of languages. Let SRLP (to be read: standard right-linear polynomials) 
denote the class of all functions of the form 

f ( X :  ,..., Xn) = A o u A : X  a u " "  U A ,X ,~ ,  (12) 

where A 0 ,..., A~ are finite languages. As it is proved in Blikle (1971), 

THEOREM 6.6. EQ[SRLP] = ~R .  

It can be also proved that finite coefficients in (12) can be replaced by 
arbitrary regular coefficients and Theorem 6.6 remains true. However 
SRLP is not an inductive family of functions, thus the theorems given in 
Section 5 cannot be applied in this case. 

A practical application of the theory of equations to the theory of regular 
languages and finite-state automata is an effective and simple algorithm 
that associates with every fs automaton the corresponding regular expression. 
To this effect one needs only write and resolve a simple set of right-linear 
equations. For details see Blikle (1971). 

ACKNOWLEDGMENTS 

I wish to thank Mr. J. Leszczytowski to whom the Theorems 2.2 and 3.1 are due. 
I also wish to thank Mrs. B. Konikowska, Mr. A. Skowron, Mr. A, Walat, and 
Dr. j .  Winkowski for many valuable discussions and remarks. 

RECEIVED: June 15, 1971 ; REVISED: April 7, 1972 



EQUATIONAL LANGUAGES 147 

REFERENCES 

DE BAKKER, J. W. (1971), Recursive procedures, Mathematical Center Tracts 24, 
Mathematisch Centrum Amsterdam, 1971. 

BLIKLE, A. (1971), Equations in a space of languages, CC PAS Reports 43, Computation 
Centre, Polish Academy of Sciences, Warsaw, 1971. 

CHO~SKY, N., AND SCHUTZENBERGER, M. P. (1963), The algebraic theory of context 
free languages, in "Computer Programming and Formal Systems" (P. Braffort and 
D. Hirschberg, Eds.), pp. 118-161, Amsterdam. 

GINSBURG, S. (1966), "The  Mathematical Theory of Context Free Languages," 
McGraw-Hill  Book Company, New York. 

GINSBURG, S., AND RICE, H. G. (1962), Two families of languages related to ALGOL, 
J. Assoc. Comput. Mach. 9, 350-371. 

LESZeZYLOWSKI, J. (1971), A theorem on resolving equations in the space of languages, 
Bull. Acad. Polon. Sci. Sgr. ScL Math. Astronom. Phys. 19, 967-970. 

MEZEI, J., AND WRIGHT, J. B. (1967), Algebraic automata and context free sets, 
Information and Control II ,  3-29. 

SCOTT, D. (1970), Lattice-theoretic models for the A-calculus, IFIP  Bulletin No. 5, 
1-50, W G  2.2. 

SHA•IR, E. (1967), A representation theorem for algebraic and context free power 
series in noncommuting variables, Information and Control 11, 239-254. 


